Chromosome Biology

2024

7th Edition

\downarrow

JANUARY

Nadia Fernández-Jiménez and Mónica Pradillo (Universidad Complutense de Madrid, Spain) Andrés García-Lor and Pablo Aleza (Instituto Valenciano de Investigaciones Agrarias, Valencia, Spain)

FEBRUARY

Drosophila melanogaster DIPTERA

$2 \mathrm{n}=8$

Chr3R

Tatyana Kolesnikova, Viktoria Dovgan and Veit Schubert (Institute of Molecular and Cellular Biology, Novosibirsk, Russia; IPK Gatersleben, Germany)

MARCH

Dipcadi goaense ASPARAGACEAE
 $2 n=2 x=12$

Top: Mitotic metaphase of D. goaense showing $2 n=12$ chromosomes and a bimodal karyotype.

Bottom: Pollen mother cell at diakinesis showing $n=6$ bivalents

Priya E. Shelke, Shrirang R. Yadav and Manoj M. Lekhak (Shivaji University, Kolhapur, India)

MAY

Phaseolus angustissimus FABACEAE

$$
2 n=2 x=20
$$

Oligo painting probes designed from the common bean genome for the orthologous Chr2 (in green) and Chr3 (in red) show translocations for both chromosomes in the genome of P. angustissimus.

Thiago Nascimento, André Marques and Andrea Pedrosa-Harand (Federal University of Pernambuco, Brazil and Max-Planck Institute for Plant Breading Research, Cologne, Germany)

JUNE

Arabidopsis thaliana BRASSICACEAE

$2 \mathrm{n}=10$

Meiosis occurs inside the female gametophyte embedded within multiple cell layers, making its investigation a challenge. Here, female meiotic cells are visualized by expression of the meiotic axis protein ASY1 fused to mRuby2 (red). This line also expresses CENH3 fused to mTurquoise? (blue).
$50 \mu \mathrm{~m}$

Rumex hastatulus POLYGONACEAE

R. hastatulus is a dioecious weed native to North America. This species has two cytologically distinct populations that vary in their heteromorphic sex chromosomes.

FISH with 5S rDNA (cyan), pericentromeric repeat (green) and telomere-specific (red) probes. $\overline{ }$

Jana Kružlicová, Roman Hobza (Institute of Biophysics CAS, Brno, Czech Republic) and Stephen Wright (University of Toronto, Canada)

AUGUST

Chionographis japonica MELANTHIACEA

$2 \mathrm{n}=2 \mathrm{x}=24$

Chromosome

centromere units

C. japonica, distributed in north Asia, is the only genus with holokinetic chromosomes in this family.

Polymer-based chromosome modeling of the mitotic holocentromere dynamic in C. japonica. The distribution of centromere units and intercentromeric chromatin are shown in the bars on the left.

SEPIEMBER

Rhynchospora tenuis CYPERACEAE
 $2 n=2 x=4$

R. tenuis is a holocentric beaksedge showing achiasmatic meiosis. It presents the lowest chromosome number reported for flowering plants $(2 n=4)$, which makes it a model candidate in the study of meiotic adaptations and karyotype evolution in holocentric species.

4 Haplotype-specific oligo probes showing a complex translocation between the non-homologous chromosomes of R. tenuis. Probes in red are specific for the haplotype 1 and probes in green specific to haplotype 2.

Thiago Nascimento and André Marques (Max-Planck Institute for Plant Breeding Research, Cologne, Germany)

October

Brachypodium hybridum POACEAE 2n=30, DDSS

Uniparental expression of the B. distachyon (D genome) 35S rRNA gene loci. The B. staceiinherited (S genome) 35S rDNA loci are transcriptionally repressed for major parts of the life cycle of B. hybridum.

Nucleolus

NoVEMBER

Crocus vernus IRIDACEAE
$2 \mathrm{n}=2 \mathrm{x}=8$

The spring crocus (C. vernus) is growing in alpine meadows of the northern Pyrenees, the Alps and the Dinaric Alps. An interesting cytogenetic feature of C. vernus is its high heterozygous karyotypes.

5S rDNA 45S rDNA CI60
Cl154
Cl188 (centromeric repeat)

Nomar Espinosa Waminal, Frank R. Blattner and Dörte Harpke (IPK, Gatersleben, Germany)

DECEMBER

Myristica fragrans MYRISTICACEAE
 $2 \mathrm{n}=2 \mathrm{x}=44$

Michael Melzer, Yi-Tzu Kuo, Jacob G. Kurian and Andreas Houben (IISER Thiruvananthapuram, India; IPK, Gatersleben, Germany)

Cover picture

Mitosis in living barley plant visualized with a multi-marker fluorescent line for chromatin (CFP-H2B), nucleolus (EYFP-FIB1) and microtubules (mCHERRY-TUA3).

Kateřina Kaduchová and Aleš Pečinka (IEB, Olomouc, Czech Republic)

Acknowledgement

The print was supported by the IPK Gatersleben and the Gemeinschaft zur Förderung der Kulturpflanzenforschung Gatersleben e. V..
Most of all, we would like to thank all colleagues who provided the beautiful contributions.

Jörg Fuchs and Andreas Houben (IPK, Gatersleben, Germany)

Gemeinschaft zur Förderung der Kulturpflanzenforschung Gatersleben e.V.
https://www.ipk-gatersleben.de/institut/ueber-uns/gemeinschaft-zur-foerderung-der-kulturpflanzenforschung-e-v

How to become a member:
https://www.ipk-gatersleben.de/fileadmin/content-
ipk/Institut/Downloads/02_Aufnahmeantrag_Formular_28082017.pdf
https://www.ipk-gatersleben.de/en/research/breeding-research/chromosome-structure-and-function https://www.facebook.com/CSF1Houben/ https://www.facebook.com/GPZcytogenetic/

