Chromosome Biology 2023

6th Edition

Brachypodium distachyonPOACEAE

▶ Brachypodium distachyon interphase nucleus without and with a micronucleus induced by X-radiation. Chromosome-specific (green, purple and yellow) and telomere-specific (red) FISH signals are visible.

■ B. distachyon (2n=10) is a small-genome annual grass originated from the Mediterranean region. It has been used to study various aspects of the plant genome organisation for more than twenty years. It is also a model organism for economically important temperate zone cereals and forage grasses.

JANUARY

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
	10000	100		16-23/11		
		10000		DVV-		1
						/
2	3	4	5	6	7	8
					11/1/1/9	1
9	10	11	12	13	14	15
		THE DE				/
16	17	18	19	20	21	22
				VIII	16./	
23	24	25	26	27	28	29
			17			
30	31		9 11 1			

Lathyrus sativusFABACEAE

▼ The grass pea, *L. sativus*, is a legume with a large genome (6.52 Gbp/C) and low chromosome number (2n = 14). The chromosomes possess extended primary constrictions (meta-polycentric chromosomes) with multiple domains of centromeric chromatin.

▶ A single satDNA family labels the extended primary constrictions of all chromosomes. Painting probes designed for the *Pisum sativum* centromere 6 (PS6-C/PS6-A) label orthologous centromere in *L. sativus*, revealing its expansion compared to *P. sativum*. Part of this centromeric extension is due to the accumulation of the satDNA family FabTR-54.

Laura Ávila Robledillo and Jiří Macas (Biology Centre, CAS, Czech Republic)

FEBRUARY

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
				3	4	5
		1	2	3	4	5
				100		
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	26
27	28					

► FISH with 5S (red) and 45S (green) rDNA probes

(left image) followed by

(green) and pTa-713 (red) satellite sequences (right

image) allowed the precise identification of all seven

chromosome pairs. Chromosomes are designated according to genetic nomen-

with GAA_n

hybridization

clature.

Aegilops comosa POACEAE

◄ Ae. comosa (2n = 2x = 14, MM), a mediterranian species with a main distribution area in coastal and inland Greece, but also occurring in Albania, former Yugoslavia and Turkey. Recently it was also found in Northern Cyprus. The photo was taken on the roadside near Troodos (h-1800 m), Cyprus by Mr. Roland Tsandekidis.

Ekaterina D. Badaeva (Vavilov Institute of General Genetics, RAS, Moscow, Russia)

MARCH

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
				1		
		1	2	3	4	5
			N			
6	7	8	9	10	11	12
			1			
13	14	15	16	17	18	19
			1			
			317			
20	21	22	23	24	25	26
			7			
27	28	29	30	31		

Alžběta Doležalová and Eva Hřibová (Institute of Experimental Botany, Olomouc, Czech Republic)

Oryza sativa POACEAE

▼ Rice is one of the most important cereal crops worldwide. Its 389 Mb genome is one of the smallest of monocots which makes rice an important experimental system for genome research.

◆ Positioning of chromosomes 2 and 9, and nucleoli in interphase nuclei of rice. In the root meristem, both chromosomes were preferentially associated (in 90% of the nuclei) compared to leaf nuclei (only in 35% of the nuclei). Chromosome 2 and chromosome 9 containing NOR region were visualized using oligopainting FISH. Nucleoli were visualized by anti-fibrillarin using immunolabeling. 3D-models were created using the software Imaris.

APRIL

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
					1	2
1 11						
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30

Rye (Secale cereale) **POACEAE**

► Rye is a self-incompatible, windpollinating species belonging to the Poaceae (Monocotyledons). Rye was

Yixuan Gao, Natalie Koch and Steven Dreissig (Martin-Luther-University Halle-Wittenberg, Germany)

MAY

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
	+					
	2	3	4	5	6	7
		THE STREET				
3	9	10	11	12	13	14
	122		1/2		HAVIM	
		Head HI	NA IN			
15	16	17	18	19	20	21
				PUNI		
			NO LIES			12022001
22	23	24	25	26	27	28
	100		FIRM	HENLE		
	110		SIK Y		MAL	15-11
29	30	31			-	

Lemna japonica LEMNACEAE

▼ Le. japonica (2n = 42, 453 Mbp/1C) is an interspecific hybrid between Le. minor and Le. turionifera according to tubulin gene polymorphism fingerprinting (Braglia et al., 2021) and GISH.

◀ GISH with genomic probes of *Le. minor* (red) and *Le. turionifera* (green) of mitotic chromosome of *Le. japonica* (clone 8434) confirms that this clone is a dihaploid hybrid between *Le. minor and Le. turionifera*.

Phuong TN Hoang, Veit Schubert, Jörg Fuchs, Tram NB Tran and Ingo Schubert (Dalat University, Vietnam and Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben), Germany)

JUNE

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
- Cab						
- 12			1	2	3	4
	10					
			- 6	The same of		
5	6	7	8	9	10	11
	100	100	a fa			
		195	- 01 121			
12	13	14	15	16	17	18
		1	No.	11 Teres		
			1/3			
19	20	21	22	23	24	25
				9		
			1			
26	27	28	29	30		

Agropyron cristatum POACEAE

Crested wheatgrass (Agropyron cristatum Gaertn.) a wild relative of wheat possesses many genes that are potentially useful in wheat improvement. The tetraploid form is the most widely used crossing partner in introgression breeding programs.

► GISH of mitotic metaphase chromosomes of wheat-*A. cristatum* lines using labeled genomic DNA from tetraploid *A. cristatum* (green). Chromosome 4P (top) and 6P (bottom) disomic addition.

Mahmoud Said, Alejandro Copete Parada, Eszter Gaál, István Molnár, Adoración Cabrera, Jaroslav Doležel and Jan Vrána (UEB, Olomouc, Czech Republic; MTA, Martonvásár, Hungary and UCO, Córdoba, Spain)

JULY

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
<u> </u>	23	20		20		30
31						

Sorghum purpureoesriceum POACEAE

▼ Wild sorghum (*S. purpureosericeum*) is a tropical, often crosspollinating species with loose and open panicles. Its genome (2n=2x=10) occasionally carries supernumerary B chromosomes.

■ B chromosome distribution in a sorghum embryo. Cross section of a mature embryo after FISH with a B chromosome-specific probe (red). The B chromosome is absent in proto-root cells and leaf primordia. Only in very few groups of cells predetermined to form meristems and reproductive organs the B chromosome exists.

Miroslava Karafiátová, Alzbeta Doležalová, Tereza Bojdová and Jan Bartoš (Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic)

AUGUST

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
				18		
			//			
	1	2	3	4	5	6
7	8	9	10	11	12	13
		00				
		Milana				
14	15	16	17	18	19	20
		1	1			
		100				
21	22	23	24	25	26	27
28	29	30	31			

Phaseolus lunatus

FABACEAE

▼ Phaseolus L. beans are one of the most important legume crops. Phaseolus lunatus (2n =22), also known as Lima bean, was domesticated twice, in Mesoamerica and in the Andes. It is worldwide consumed for its high level of fibers and proteins.

▶ Oligo-FISH painting probes for *P. vulgaris* chromosomes 2 (green) and 3 (red) were hybridized to *P. lunatus* chromosomes, evidencing a conserved synteny of these two chromosome pairs. Chromomycin A3 (yellow) marks pericentromeric heterochromatin. Chromosome 6 carries 35S rDNA repeats (purple).

SEPTEMBER

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
		1////				
			7 (1)	1	2	3
	9 1					
	- 000					
4	5	6	7	8	9	10
				26.55.00		
	120000		799	1900		
11	12	13	14	15	16	17
17356						
		1.49(3)				
18	19	20	21	22	23	24
				1 / 43/0		
	7 7 1 1	1 3000	1000	1 2 50	THE SHEET	
25	26	27	28	29	30	

Cycas revoluta CYCADACEAE

◆ "Cycads are to the vegetable kingdom what Dinosaurs are to the animal, each representing
the culmination in Mesozoic times of the ruling Dynasties in the life of their age." Lester Ward,
1900. The members of the Cycadaceae family exhibit several interesting genomic features:
stable chromosome number x=11; there are only diploid species, their karyotypes are
asymmetrical and they contain abundant telomeric repeat variants in both telomeres and
centromeres.

▼ Immunostaining of *C. revoluta* (2n=2x=22) mitotic chromosomes with antibodies recognizing phosphorylated histone H3 at threonine 3 (green) and phosphorylated histone H3 at serine 28 (red). Histone H3 phosphorylation is enriched in pericentromeric regions (green arrows). Diffuse anti-H3T3p signals are also observed along the chromosome axis between the chromatids and some chromosome ends (green arrowhead).

OCTOBER

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
		-			1/1/	
			1	Was I	A GALLERY	
			AND			1
			N AL	MAN	Mary "	
2	3	4	5	6	7	8
_						
	1 1 1		The same			
9	10	11	12	13	14	15
		2				
	1.75					
16	17	18	19	20	21	22
	-	4	100			
23	24	25	26	27	28	29
23	24	25	20	21	26	29
	P	100				
30	31		1000			

Festuca pratensis POACEAE

▼ Festuca species have a diverse distribution and are considered important components of grass ecosystems of the temperate zones. In *F. pratensis in* addition to the essential A chromosomes, one to five supernumerary B chromosomes have been reported.

► FISH of an intact pollen grain of *F. pratensis* using the B-specific probe Fp_Sat 253. Only sperm nuclei display B-specific signals indicating that the drive of Bs occurs in the first pollen mitosis.

Rahman Ebrahimzadegan, Jianyong Chen, Andreas Houben and Ghader Mirzaghaderi (University of Kurdistan, Iran and IPK Gatersleben, Germany)

NOVEMBER

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
					19. 100	
		1	2	3	4	5
		131	100	9/1/3		1
	_	1/14				1
6	7	8	9	10	11	12
	1	11/1/1	40		1	
	4					
13	14	15	16	17	18	19
						4
20	21	22	23	24	25	26
27	28	29	30			

Arabidopsis thalianaBRASSICACEAE

▼ A. thaliana (2n = 10) serves as one of the model systems to understand the 3D organising principles of the genome, in eukaryotes.

■ 3D imaging using Stimulated Emission Depletion (STED) of Arabidopsis nuclei allows to gain insight into the 3D genome organization at nanoscale resolution. Here, isolated leaf nuclei were immunostained for RNA Pol II ser2P (green) and counterstained for DNA using Live 560 (Abberior. magenta). The image was segmented to produce a digital representation of the nucleus, heterochromatin (chromocenters and nanochromocenters) and transcription clusters. This step enables a quantitative analysis, in 3D, of the distribution of transcriptional clusters.

DECEMBER

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

Cephalaria syriaca (Pelemir)

DIPSACACEAE

▼ C. syriaca (2n=2x=10) is a member of the Dipsacaceae family, which is generally distributed in Europe, West and Central Asia, Northern and Southern Africa, and Mediterranean regions. The genus Cephalaria is extremely rich in macromolecules and chemical compounds, and has a significant biological and morphological diversity in Turkey.

▲ FISH revealed the centromere-specificity of the Cs150 satellite repeat on chromosomes of *C. syriaca*.

Sevim D. Kara Öztürk, Yi-Tzu Kuo, Andreas Houben, Ahmet L. Tek (Niğde Ömer Halisdemir University, IPK)

2024

			JANL	JAR'	Y		
Wk	Мо	Tu	We	Th	Fr	Sa	Su
1	1	2	3	4	5	6	7
2	8	9	10	11	12	13	14
3	15	16	17	18	19	20	21
4	22	23	24	25	26	27	28
5	29	30	31				
			M	ΑY			
\//lc	Ma	т	W ₀	Th	Er	60	e

		F	EBR	UAR	Y		
Wk	Мо	Tu	We	Th	Fr	Sa	Su
5				1	2	3	4
6	5	6	7	8	9	10	11
7	12	13	14	15	16	17	18
8	19	20	21	22	23	24	25
9	26	27	28	29			

١				MAF	RCH			
	Wk	Мо	Tu	We	Th	Fr	Sa	Su
	9					1	2	3
	10	4	5	6	7	8	9	10
	11	11	12	13	14	15	16	17
	12	18	19	20	21	22	23	24
	13	25	26	27	28	29	30	31

			API	RIL			
Wk	Мо	Tu	We	Th	Fr	Sa	Su
14	1	2	3	4	5	6	7
15	8	9	10	11	12	13	14
16	15	16	17	18	19	20	21
17	22	23	24	25	26	27	28
18	29	30					

			MA	ΑY			
Wk	Мо	Tu	We	Th	Fr	Sa	Su
18			1	2	3	4	5
19	6	7	8	9	10	11	12
20	13	14	15	16	17	18	19
21	20	21	22	23	24	25	26
22	27	28	29	30	31		

			JU	NE			
Wk	Мо	Tu	We	Th	Fr	Sa	Su
22						1	2
23	3	4	5	6	7	8	9
24	10	11	12	13	14	15	16
25	17	18	19	20	21	22	23
26	24	25	26	27	28	29	30

			JU	LY			
Wk	Мо	Tu	We	Th	Fr	Sa	Su
27	1	2	3	4	5	6	7
28	8	9	10	11	12	13	14
29	15	16	17	18	19	20	21
30	22	23	24	25	26	27	28
31	29	30	31				

			AUG	UST			
Wk	Мо	Tu	We	Th	Fr	Sa	Su
31				1	2	3	4
32	5	6	7	8	9	10	11
33	12	13	14	15	16	17	18
34	19	20	21	22	23	24	25
35	26	27	28	29	30	31	

SEPTEMBER										
Wk	Мо	Tu	We	Th	Fr	Sa	Su			
35							1			
36	2	3	4	5	6	7	8			
37	9	10	11	12	13	14	15			
38	16	17	18	19	20	21	22			
39	23	24	25	26	27	28	29			

40 30

	OCTOBER											
Wk	Мо	Tu	We	Th	Fr	Sa	Su					
40		1	2	3	4	5	6					
41	7	8	9	10	11	12	13					
42	14	15	16	17	18	19	20					
43	21	22	23	24	25	26	27					
44	28	29	30	31								

١			N	OVE	MBE	R		
	Wk	Мо	Tu	We	Th	Fr	Sa	Su
	44					1	2	3
	45	4	5	6	7	8	9	10
	46	11	12	13	14	15	16	17
	47	18	19	20	21	22	23	24
	48	25	26	27	28	29	30	

	DECEMBER											
Wk	Mo Tu We Th Fr Sa Su											
48							1					
49	2	3	4	5	6	7	8					
50	9	10	11	12	13	14	15					
51	16	17	18	19	20	21	22					
52	23	24	25	26	27	28	29					
	30	31										

kulturpflanzenforschung-e-v uns/gemeinschaft-zur-foerderung-derhttps://www.ipk-gatersleben.de/institut/ueber-

ar_28082017.pdf ipk/Institut/Downloads/02_Aufnahmeantrag_Formul https://www.ipk-gatersleben.de/fileadmin/content-How to become a member:

(Polygonaceae) anther. tissue section of a Fagopyrum tataricum Immunodetection of histone H4 acetylation (green) in a Cover picture

Betekhtin (University of Silesia in Katowice, Poland) Agnieszka Brąszewska, Artur Piński and Alexander

Acknowledgement

Most of all, we would like to thank all colleagues who provided the beautiful contributions. Gatersleben e. V. The print was supported by the IPK Gatersleben and the Gemeinschaft zur Förderung der Kulturpflanzenforschung

Compilation and Design: Jörg Fuchs and Andreas Houben (IPK, Gatersleben, Germany)

https://www.ipk-gatersleben.de/en/research/breeding-research/chromosome-structure-and-function

https://www.facebook.com/CSF1Houben/

https://www.tacebook.com/GPZcytogenetic/