CHROMOSOME BIOLOGY 2022

Phaseolus vulgaris and P. leptostachyus FABACEAE

▶ Phaseolus vulgaris is the second legume crop in importance to humans. As most of the genus, it has 2n = 22, while three species from the Leptostachyus group have 2n = 20 due to a descending dysploidy event. Although the dysploidy was caused by a nested chromosome fusion, P. leptostachyus underwent an intense genome re-structuring in a short period of time (~ 1.3 MyA), with multiple translocations observed after chromosome painting.

▲ Oligo-FISH painting probes for *P. vulgaris* (left) chromosomes 2 (in green) and 3 (in red) were hybridized to *P. leptostachyus* (right), evidencing how rearranged these two chromosome pairs are in this dysploid species. Chromosome 2 segments are distributed in at least four different chromosome pairs, while chromosome 3 segments are present in three different pairs. Arrowheads in *P. leptostachyus* karyotype points to small segments of chromosome 3 in a different pair. The difference in the distribution of the 35S rDNA loci (in purple) is also observed. Bar corresponds to 5 µm.

Thiago H. Nascimento and Andrea Pedrosa-Harand (Federal University of Pernambuco, Recife, Brazil)

JANUARY

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31						

▲ Distribution of the outer kinetochore protein NDC80 (red) and microtubules (green) on chromosomes and interphase nucleus of the monocentric species *C. reflexa*.

Cuscuta reflexa CONVOLVULACEAE

▼ *C. reflexa* (2n=32), also known as the giant dodder, is a parasitic leafless plant, common in the Indian subcontinent and the Greater Himalayas.

Ludmila Oliveira, Pavel Neumann, Andrea Koblížková and Jiří Macas (Biology Centre CAS, České Budějovice, Czech Republic)

FEBRUARY

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
					4,	
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
28						

Hydrangea macrophylla HYDRANGACEAE

▼ H. macrophylla is an ornamental crop with impressively large flowers. Cultivars of H. macrophylla are used for landscaping, as potted plants for indoor cultivation or for production of fresh and dry cut flowers.

◄ *H.* macrophylla includes diploid (2n = 2x = 36) as well as polyploid varieties (3x, 4x, 5x). Presumably, most of them resulted from spontaneous polyploidization through unreduced pollen. The formation of high frequencies of unreduced pollen (>50%) is genetically controlled by a major locus in a dominant-recessive manner.

MARCH

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
		1	13/19			
						3
	1	2	3	4	5	6
						2017
7	8	9	10	11	12	13
1 de la		A MARIE	7(0)		1	
	VVV	IV T				
14	15	16	17	18	19	20
				1		
24	22	22	24	25	26	27
21	22	23	24	25	26	27
			1		1651	
					276	
28	29	30	31	4 160	LA SO	

Chionographis japonicaMELANTHIACEAE

▼ *C. japonica* (2n = 24), distributed in north Asia, is the only genus with holokinetic chromosomes in this family.

◀ FISH probes, 45S rDNA 1 (red) and 45S rDNA 2 (green), covering a 45S rDNA unit show a pair of signals on both interphase nuclei and metaphase chromosomes of *C. japonica*. On the high-resolution chromatin fibers, their signals alternate and demonstrate the tandemly arrayed nature of the 45S rDNA.

APRIL

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
		94-11				
				State		
18	19	20	21	22	23	24
25	26	27	28	29	30	

Wheat (Triticum aestivum L.) POACEAE

▼ Wheat lines possessing the B chromosome of rye as addional chromosome exist. Mature pollen of wheat analysed by scanning electron microscopy.

◄ The B chromosome is a dispensable element in the genome of many plants, animals, and fungi. B chromosomes in many species evolved a drive mechanism to transmit themselves at a higher frequency. Due to the drive process at the first pollen mitosis, rye Bs preferentially accumulate in sperm nuclei. Therefore after pollen FISH the rye B chromosome-specific repeat D1100 (green) only produces sperm nuclei-specific signals.

MAY

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
						1
63						
2	3	4	5	6	7	8
9	10	11	12	13	14	15
			13.50			
16	17	18	19	20	21	22
			1000			
23	24	25	26	27	28	29
30	31					

Arabidopsis thalianaBRASSICACEAE

▼ A. thaliana (2n = 10) constitutes a great model system for the study of biological processes. It was the first plant genome to be fully sequenced and there is a considerable number of mutant lines available that can be screened for phenotypes of interest.

◆ Structural maintenance of chromosome 5/6 (SMC5/6) complex is essential for preserving genome stability and plant fertility. Mutants defective for this complex produce triploid offspring because of the formation of unreduced male gametes. These gametes are generated as a consequence of the production of dyads instead of tetrads, as can be seen in this spiral meiosis sequence.

Nadia Fernández-Jiménez and Mónica Pradillo (Universidad Complutense de Madrid, Spain) Fen Yang and Ales Pecinka (Institute of Experimental Botany, Olomouc, Czech Republic)

JUNE

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
						A 1
		1	2	3	4	5
		1				
6	7	8	9	10	11	12
13	14	15	16	17	18	19
20	21	22	23	24	25	27
27	28	29	30			

Aegilops crassa Boiss.

Persian goatgrass POACEAE

▶ Polyploid species, growing in the eastern part of the distribution area of the genus *Aegilops*. Two biotypes are discriminated within *Ae. crassa*: tetraploid (2n=28) and hexaploid (2n=42).

■ Evidence from molecular and cytogenetic analyses suggest that Ae. crassa is probably the oldest polyploid species in the genus Aegilops, which origin is still not clear. One genome is thought to originate from ancient Ae. tauschii, whereas the second genome was probably contributed by the progenitor of the Sitopsis section. Both genomes were substantially modified during speciation. Hexaploid Ae. crassa originated from hybridization of tetraploid form with Ae. tauschii.

JULY

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
			1////	1		
				1	2	3
4	5	6	7	8	9	10
11	12	13	14	15	16	17
18	19	20	21	22	23	24
25	26	27	28	29	30	31

Landoltia punctata LEMNACEAE

▼ Belongs to the monospecific duckweed genus *Landoltia*

■ Distribution of GAA microsatellite signals on *La. punctata* chromo-somes (2n = 46).

GAA microsatellite probe and telomere repeats (TTTAGGG); imaged by 3D-SIM.

Phuong N. T. Hoang (Dalat University, Da Lat, Vietnam) and Ingo Schubert (IPK, Gatersleben, Germany)

AUGUST

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
						28.77
				_		
1	2	3	4	5	6	7
	455					1.657
8	9	10	11	12	13	14
15	16	17	18	19	20	21
22	23	24	25	26	27	28
29	30	31				

Triticum aestivumPOACEAE

▼ Bread wheat (*T. Aestivum*) is a staple food for a significant part of the world's population. Wheat is an allohexaploid species (2n = 6x = 42), comprising three homoeologous genomes A, B, and D.

We used flow-sorted nuclei from root meristem to explore replication timing and 3D organization of 5 different stages of interphase (Němečková *et al.*, 2020).

◆ Cell nucleus of bread wheat at the middle stage of S
phase. Replicating DNA was labeled by EdU (green),
centromeres were visualized using immunolabeling of
CenH3 (yellow), and telomeres were visualized by FISH
(red). Nuclear DNA was stained with DAPI (blue).

SEPTEMBER

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
No.	9 1000	Part N	World !			MA A
V PX			HONEY!	O'AMAN		
	N 11863	11437	1	2	3	4
Salar Mill	B ISE		10000	. 7/4/16		He land
		ALV.			WI WEST	DO W. Y
5	6	7	8	9	10	11
- 3/4	1 100		1///			
1000		NW.AT	4/ 1/			MIN
12	13	14	15	16	17	18
# 14 \$			1		B 13/0	
3 1 3			P. 11/1	1 - 4 /	M WHA	
19	20	21	22	23	24	25
(PERIO	27/11/11	Wall I S		1 // //		
132 111	DVA I	W HV		- 3/P/13		
26	27	28	29	30		

Pseudorogneria libanotica TRITICEAE, POACEAE

▼ Pse. libanotica (2n = 14), wild diploid Triticeae species with StSt genome, is one of the most critical basic species, which participate to more than 65% perennial polyploid speciation in Triticeae.

▲ Single-copy FISH barcode on mitotic metaphase chromosomes of *Pse. libanotica*. Common wheat 5-homoelogous group single-gene FISH marker (5L) was applied to identify the homoelogous 5St chromosomes (red arrow) in *Pse. libanotica*. Interestingly, a duplication was observed on chromosome 2St (yellow arrow).

Dan-dan Wu, Qian Xiang, Na-mei Yang, Hai-qin Zhang and Yong-hong Zhou (Sichuan Agricultural University, Chengdu, China)

OCTOBER

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
		1300				
					1	2
3	4	5	6	7	8	9
10	11	12	13	14	15	16
17	18	19	20	21	22	23
24	25	26	27	28	29	30
31						

Genipa americana RUBIACEAE

▲ G. americana is a large tree widespread in the Neotropics. Its fruit is used in sweets, juice, liqueur, syrup and as a source of quinine in folk medicine. The native tribes use the juice of unripe fruits to paint their bodies.

▲ Almost half of its 22 chromosomes are positively stained with chromomycin A3 (yellow bands) and it is probably the tree species with the highest heterochromatin content. *In situ* hybridization of a telomeric probe (red signals) revealed that all CMA+ bands are enriched in TTTAGGG, except for two small 35S rDNA sites.

Lidiane Feitoza, Jéssica Nascimento and Marcelo Guerra (Federal University of Pernambuco, Recife, Brazil)

NOVEMBER

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
	F.					
	1 10					
	1	2	3	4	5	6
7	8	9	10	11	12	13
14	15	16	17	18	19	20
21	22	23	24	25	26	27
			321			
28	29	30	1 4990			

▲ Oligonucleotide fluorescent *in situ* hybridization to a metaphase of *E. glaucum* (2n=18) with 5S rDNA probe (red) showing one dispersed site on one pair of chromosomes and Egcen, a 134bp repeat (green), found at the centromeres of all chromosomes.

Ensete glaucum MUSACEAE

▼ A 3 m tall *Ensete glaucum* plant with a large green hanging inflorescence collected from Yunnan province, China, growing in the South China Botanical Garden. *Ensete* is a sister genus to *Musa*. *E. glaucum* is widely distributed in Asia. As a cold resistant and drought species it is a potential gene and germplasm resource for abiotic stress tolerance in banana breeding.

Ziwei Wang, Qing Liu, Trude Schwarzacher& Pat Heslop-Harrison (South China Botanical Garden, Guangzhou, China & University of Leicester, UK)

DECEMBER

Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
1	1993 AV		11/1/2/	- Volt		
	TO PATE					
CONTRACTOR OF THE PARTY OF THE			1	2	3	4
A A						
	100				1	- The
5	6	7	8	9	10	11
			5 16		· Janes	
TO CO						
12	13	14	15	16	17	18
	MA			- 1/1/4/		
P AN	TA BASS				1971 DA	
19	20	21	22	23	24	25
	1 1 5			1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
		1/4			1	
26	27	28	29	30	31	

Vigna unguiculata FABACEAE

▼ *V. unguiculata* (2n = 22), originated from sub-Saharan Africa, is one of the most important legume crops at dryland farming in Africa due to the tolerant to drought and heat.

Immunostaining of two functional centromere specific histone H3 (CENH3) variants on cowpea pachytene chromosomes. Both CENH3s are localized in functional centromeres of cowpea.

JANUARY											
Wk	Мо	Tu	We	Th	Fr	Sa	Su				
							1				
1	2	3	4	5	6	7	8				
2	9	10	11	12	13	14	15				
3	16	17	18	19	20	21	22				
4	23	24	25	26	27	28	29				
5	30	31									

FEBRUARY											
Wk	Мо	Tu	We	Th	Fr	Sa	Su				
5			1	2	3	4	5				
6	6	7	8	9	10	11	12				
7	13	14	15	16	17	18	19				
8	20	21	22	23	24	25	26				
9	27	28									

MARCH											
Wk	Мо	Tu	We	Th	Fr	Sa	Su				
9			1	2	3	4	5				
10	6	7	8	9	10	11	12				
11	13	14	15	16	17	18	19				
12	20	21	22	23	24	25	26				
13	27	28	29	30	31						

APRIL											
Wk	Мо	Tu	We	Th	Fr	Sa	Su				
13						1	2				
14	3	4	5	6	7	8	9				
15	10	11	12	13	14	15	16				
16	17	18	19	20	21	22	23				
17	24	25	26	27	28	29	30				

1	MAY											
	Wk	Мо	Tu	We	Th	Fr	Sa	Su				
	18	1	2	3	4	5	6	1				
	19	8	9	10	11	12	13	8				
	20	15	16	17	18	19	20	15				
	21	22	23	24	25	26	27	22				
	22	29	30	31								

JUNE											
Wk	Мо	Tu	We	Th	Fr	Sa	Su				
22				1	2	3	4				
23	5	6	7	8	9	10	11				
24	12	13	14	15	16	17	18				
25	19	20	21	22	23	24	25				
26	26	27	28	29	30						

	JULY											
Wk	Мо	Tu	We	Th	Fr	Sa	Su					
26						1	2					
27	3	4	5	6	7	8	9					
28	10	11	12	13	14	15	16					
29	17	18	19	20	21	22	23					
30	24	25	26	27	28	29	30					
31	31											

AUGUST											
Wk	Мо	Tu	We	Th	Fr	Sa	Su				
31		1	2	3	4	5	6				
32	7	8	9	10	11	12	13				
33	14	15	16	17	18	19	20				
34	21	22	23	24	25	26	27				
35	28	29	30	31							

	SEPTEMBER										
Wk	Мо	Tu	We	Th	Fr	Sa	Su				
35					1	2	3				
36	4	5	6	7	8	9	10				
37	11	12	13	14	15	16	17				
38	18	19	20	21	22	23	24				
39	25	26	27	28	29	30					

	OCTOBER											
Wk	Мо	Tu	We	Th	Fr	Sa	Su					
39							1					
40	2	3	4	5	6	7	8					
41	9	10	11	12	13	14	15					
42	16	17	18	19	20	21	22					
43	23	24	25	26	27	28	29					
44	30	31										

NOVEMBER											
Wk	Мо	Tu	We	Th	Fr	Sa	Su				
44			1	2	3	4	5				
45	6	7	8	9	10	11	12				
46	13	14	15	16	17	18	19				
47	20	21	22	23	24	25	26				
48	27	28	29	30							

DECEMBER											
Wk	Мо	Tu	We	Th	Fr	Sa	Su				
48					1	2	3				
49	4	5	6	7	8	9	10				
50	11	12	13	14	15	16	17				
51	18	19	20	21	22	23	24				
52	25	26	27	28	29	30	31				

Gemeinschaft zur Förderung der Kulturpflanzenforschung Gatersleben e.V.

https://www.ipk-gatersleben.de/institut/ueberuns/gemeinschaft-zur-foerderung-derkulturpflanzenforschung-e-v

How to become a member: https://www.ipk-gatersleben.de/fileadmin/content-ipk/Institut/Downloads/02_Aufnahmeantrag_Formul ar_28082017.pdf

Cover picture Genome optical mapping of wheat. Saki Chan (Bionano) and Hana Śimková (Institute of Experimental Botany, Olomouc, Czech Republic)

Acknowledgement
The print was supported by the IPK Gatersleben and the Gemeinschaft zur Förderung der Kulturpflanzenforschung
Gatersleben e. V..

Most of all, we would like to thank all colleagues who provided the beautiful contributions. Jörg Fuchs and Andreas Houben (IPK, Gatersleben, Germany)

https://www.ipk-gatersleben.de/en/research/breeding-research/chromosome-structure-and-function

https://www.facebook.com/CSF1Houben/

https://www.facebook.com/GPZcytogenetic/