Plant Architecture
Developmental and Molecular Genetics of Cereals:
The research programme primarily centers on inflorescence growth and development in wheat and barley. We are utilising natural variation from wheat and induced mutants from barley to clarify the genetic make-up of genes underlying developmental phenotypes e.g. for reduced and increased grain number per spike.
DFGAward, HEISENBERG Research Professorship (2019-2021)
For research in the area of inflorescence architecture of cereals by providing deeper insights into our understanding of the molecular genetics of spike, spikelet, or floret development in barley and wheat.
scroll top
Projects
One promising avenue for improving grain yield of cereal crops, including wheat and barley, involves reducing spikelet/floret mortality. Spikelets, the grain-bearing units of cereal spikes, usually form in excess and subsequently abort during development; increased spikelet/floret survival is linked to increased numbers of grains per spike. Therefore, reducing spikelet/floret mortality is an intriguing approach to improve grain yield.
In barley, the number of spikelets per spike at around awn primordium stage represents the maximum yield potential per spike. Afterwards, significant spikelet mortality results in fewer grains per spike. Our previous results indicated that spikelet/floret survival in barley is highly genetically controlled (Alqudah and Schnurbusch 2014, Functional Plant Biology). However, the underlying genetic and molecular determinants of spikelet survival remain to be discovered. Thus, obtained results during the LUSH SPIKE (ERC CoG, 2016-2021) project will advance our understanding of how to improve yields of cereal crops.
1. Genetic and Molecular Determinants of Spikelet/Floret Survival in Cereal Crops (ERC)
2. EFRE (European Fund for Regional Development) and State Saxony-Anhalt, ALIVE Project Grant No. ZS/2018/09/94616, granted to Prof. Thorsten Schnurbusch, Project period 01.07.2019-31.12.2022
Inflorescence Architecture of Cereal Spikes

Our understanding of the molecular genetics of spike or spikelet development is very limited in small grain cereals. Functional knowledge of genes, which regulate key developmental traits such as inflorescence branching, spikelet initiation or abortion, rachis internode length, or total number of rachis internodes is almost completely lacking in most of our cereal crops. We are utilizing natural spike variants from wheat and induced spike mutants from barley to clarify the genetic make-up of genes underlying developmental phenotypes for reduced and increased grain number per spike.
Spikelet and Floret Development

Among the Triticeae, barley (Hordeum vulgare L.) shows a distinct spikelet formation with three single-flowered spikelets per rachis node. Based upon the size and fertility of the two lateral spikelets barley can be classified into five row-types (Mansfeld 1950): (1) convar. deficiens, (2) convar. distichon, (3) convar. intermedium, (4) convar. labile, and (5) convar. hexastichon. Three mutant barley loci—vrs2, vrs3, and vrs4—individually determine the conversion from two- (distichon) to six-rowed (hexastichon) barleys but were exclusively found after mutagenesis. The molecular isolation of genes being involved in lateral spikelet fertility may provide an important contribution to further insights into the developmental genetic processes underlying floret formation in barley and other grasses.
Genetic and Molecular Determinants of Spikelet/Floret Survival in Cereal Crops

One promising avenue for improving grain yield of cereal crops, including wheat and barley, involves reducing spikelet/floret mortality. Spikelets, the grain-bearing units of cereal spikes, usually form in excess and subsequently abort during development; increased spikelet/floret survival is linked to increased numbers of grains per spike. Therefore, reducing spikelet/floret mortality is an intriguing appraoch to improve grain yield.
In barley, the number of spikelets per spike at around awn primordium stage represents the maximum yield potential per spike. Afterwards, significant spikelet mortality results in fewer grains sper spike. Our previous results indicated that spikelet/floret survival in barley is highly genetically controlled (Alqudah and Schnurbusch 2014, Functional Plant Biology). However, the underlying genetic and molecular determinants of spikelet survival remain to be discovered. Thus, obtained results during the LUSH SPIKE(ERC CoG, 2016-2021) project will advance our understanding of how to improve yields of cereal crops.
scroll top
Staff
scroll top
Publications
Golan G, Abbai R, Schnurbusch T:
Exploring the tradeoff between individual fitness and community performance of wheat crops using simulated canopy shade. Plant Cell Environ. (2023) Epub ahead of print. https://dx.doi.org/10.1111/pce.14499
Huang Y, Kamal R, Shanmugaraj N, Rutten T, Thirulogachandar V, Zhao S, Hoffie I, Hensel G, Rajaraman J, Moya Y A T, Hajirezaei M-R, Himmelbach A, Poursarebani N, Lundqvist U, Kumlehn J, Stein N, von Wirén N, Mascher M, Melzer M, Schnurbusch T:
A molecular framework for grain number determination in barley. Sci. Adv. 9 (2023) eadd0324. https://dx.doi.org/10.1126/sciadv.add0324
Shanmugaraj N, Rutten T, Svatoš A, Schnurbusch T, Mock H-P:
Fast and reproducible matrix deposition for MALDI mass spectrometry imaging with improved glass sublimation setup. J. Am. Soc. Mass Spectrom. 34 (2023) 513–517. https://dx.doi.org/10.1021/jasms.2c00301
Kamal R, Muqaddasi Q H, Zhao Y, Schnurbusch T:
Spikelet abortion in six-rowed barley is mainly influenced by final spikelet number with potential spikelet number acting as a suppressor trait. J. Exp. Bot. 73 (2022) 2005–2020. https://dx.doi.org/10.1093/jxb/erab529
Koppolu R, Chen S, Schnurbusch T:
Evolution of inflorescence branch modifications in cereal crops. Curr. Opin. Plant Biol. 65 (2022) 102168. https://dx.doi.org/10.1016/j.pbi.2021.102168
Koppolu R, Jiang G, Milner S G, Muqaddasi Q H, Rutten T, Himmelbach A, Guo Y, Stein N, Mascher M, Schnurbusch T:
The barley mutant multiflorus2.b reveals quantitative genetic variation for new spikelet architecture. Theor. Appl. Genet. 135 (2022) 571–590. https://dx.doi.org/10.1007/s00122-021-03986-w
Lapasiya T H:
Fine mapping of a spikelet survival QTL from wild barley that can substantially increase spikelet survival in an elite barley background. (Master Thesis) Kiel, Christian-Albrechts-Universität zu Kiel, Fakultät für Agrar- und Ernährungswissenschaften (2022)
Sayed M A, Maurer A, Schmutzer T, Schnurbusch T, Börner A, Hansson M, Pillen K, Youssef H M:
Genome-wide association study of salt tolerance-related traits during germination and seedling development in an intermedium-spike barley collection. Int. J. Mol. Sci. 23 (2022) 11060. https://dx.doi.org/10.3390/ijms231911060
Janaki Ramayya P, Vinukonda V P, Singh U M, Alam S, Venkateshwarlu C, Vipparla A K, Dixit S, Yadav S, Abbai R, Badri J, T R, Phani Padmakumari A, Singh V K, Kumar A:
Marker-assisted forward and backcross breeding for improvement of elite Indian rice variety Naveen for multiple biotic and abiotic stress tolerance. PLoS One 16 (2021) e0256721. https://dx.doi.org/10.1371/journal.pone.0256721
Kaur B, Sandhu K S, Kamal R, Kaur K, Singh J, Röder M S, Muqaddasi Q H:
Omics for the improvement of abiotic, biotic, and agronomic traits in major cereal crops: applications, challenges, and prospects. Plants 10 (2021) 1989. https://dx.doi.org/10.3390/plants10101989
Muqaddasi Q H, Kamal R, Mirdita V, Rodemann B, Ganal M W, Reif J C, Röder M S:
Genome-wide association studies and prediction of tan spot (Pyrenophoratritici-repentis) infection in European winter wheat via different marker platforms. Genes 12 (2021) 490. https://dx.doi.org/10.3390/genes12040490
Selvaraj R, Singh A K, Singh V K, Abbai R, Habde S V, Singh U M, Kumar A:
Superior haplotypes towards development of low glycemic index rice with preferred grain and cooking quality. Sci. Rep. 11 (2021) 10082. https://dx.doi.org/10.1038/s41598-021-87964-8
Thiel J, Koppolu R, Trautewig C, Hertig C, Kale S M, Erbe S, Mascher M, Himmelbach A, Rutten T, Esteban E, Pasha A, Kumlehn J, Provart N J, Vanderauwera S, Frohberg C, Schnurbusch T:
Transcriptional landscapes of floral meristems in barley. Sci. Adv. 7 (2021) eabf0832. https://dx.doi.org/10.1126/sciadv.abf0832
Thirulogachandar V, Koppolu R, Schnurbusch T:
Strategies of grain number determination differentiate barley row-types. J. Exp. Bot. 72 (2021) 7754–7768. https://dx.doi.org/10.1093/jxb/erab395
Thirulogachandar V, Schnurbusch T:
Spikelet stop determines the maximum yield potential stage in barley. J. Exp. Bot. 72 (2021) 7743–7753. https://dx.doi.org/10.1093/jxb/erab342
Wolde G M, Schreiber M, Trautewig C, Himmelbach A, Sakuma S, Mascher M, Schnurbusch T:
Genome-wide identification of loci modifying spike-branching in tetraploid wheat. Theor. Appl. Genet. 134 (2021) 1925–1943. https://dx.doi.org/10.1007/s00122-020-03743-5
Abbai R, Singh V K, Snowdon R J, Kumar A, Schnurbusch T:
Seeking crops with balanced parts for the ideal whole. Trends Plant Sci. 25 (2020) 1189-1193. https://dx.doi.org/10.1016/j.tplants.2020.08.011
Börner A, Alqudah A M, Alomari D Z, Brassac J, Cardelli M, Esquisabel E, Impe D, Koppolu R, Lohwasser U, Muqaddasi Q H, Nagel M, Rehman Arif M A, Röder M S, Schierenbeck M, Simón M R, Tarawneh R, Uranga J P, Zaynali Nezhad K:
Items from Germany. Ann. Wheat Newsl. 66 (2020) 12-23.
Poursarebani N, Trautewig C, Melzer M, Nussbaumer T, Lundqvist U, Rutten T, Schmutzer T, Brandt R, Himmelbach A, Altschmied L, Koppolu R, Youssef H M, Sibout R, Dalmais M, Bendahmane A, Stein N, Xin Z, Schnurbusch T:
COMPOSITUM 1 contributes to the architectural simplification of barley inflorescence via meristem identity signals. Nat. Commun. 11 (2020) 5138. https://dx.doi.org/10.1038/s41467-020-18890-y
Sakuma S, Schnurbusch T:
Of floral fortune: tinkering with the grain yield potential of cereal crops. New Phytol. 225 (2020) 1873–1882. https://dx.doi.org/10.1111/nph.16189
Tura H, Edwards J, Gahlaut V, Garcia M, Sznajder B, Baumann U, Shahinnia F, Reynolds M, Langridge P, Balyan H S, Gupta P K, Schnurbusch T, Fleury D:
QTL analysis and fine mapping of a QTL for yield-related traits in wheat grown in dry and hot environments. Theor. Appl. Genet. 133 (2020) 239–257. https://dx.doi.org/10.1007/s00122-019-03454-6
Yadala R:
Small lateral spikelet1 controls the lateral spikelet size in barley. (Master Thesis) Vadlamudi, India, Vignans Foundation For Science, Technology & Research (Deemed to be University), Department of Biotechnology (2020) 77 pp.
Youssef H M, Allam M, Boussora F, Himmelbach A, Milner S G, Mascher M, Schnurbusch T:
Dissecting the genetic basis of lateral and central spikelet development and grain traits in intermedium-spike barley (Hordeum vulgare convar. intermedium). Plants 9 (2020) 1655. https://dx.doi.org/10.3390/plants9121655
Koppolu R, Schnurbusch T:
Developmental pathways for shaping spike inflorescence architecture in barley and wheat. J. Integr. Plant Biol. 61 (2019) 278-295. https://dx.doi.org/10.1111/jipb.12771
Muqaddasi Q H, Brassac J, Koppolu R, Plieske J, Ganal M W, Röder M S:
TaAPO-A1, an ortholog of rice ABERRANT PANICLE ORGANIZATION 1, is associated with total spikelet number per spike in elite European hexaploid winter wheat (Triticum aestivum L.) varieties. Sci. Rep. 9 (2019) 13853. https://dx.doi.org/10.1038/s41598-019-50331-9
Sakuma S, Golan G, Guo Z, Ogawa T, Tagiri A, Sugimoto K, Bernhardt N, Brassac J, Mascher M, Hensel G, Ohnishi S, Jinno H, Yamashita Y, Ayalon I, Peleg Z, Schnurbusch T, Komatsuda T:
Unleashing floret fertility in wheat through the mutation of a homeobox gene. Proc. Natl. Acad. Sci. U.S.A. 116 (2019) 5182-5187. https://dx.doi.org/10.1073/pnas.1815465116
Schnurbusch T:
Wheat and Barley Biology: towards new frontiers. J. Integr. Plant Biol. 61 (2019) 198-203. https://dx.doi.org/10.1111/jipb.12782
Schnurbusch T (Ed.):
Special Issue: Barley and Wheat Biology. (Series: J. Integr. Plant Biol., Vol. 61) (2019) 179 pp.
Wolde G M, Mascher M, Schnurbusch T:
Genetic modification of spikelet arrangement in wheat increases grain number without significantly affecting grain weight. Mol. Genet. Genomics 294 (2019) 457–468. https://dx.doi.org/10.1007/s00438-018-1523-5
Wolde G M, Schnurbusch T:
Inferring vascular architecture of the wheat spikelet based on resource allocation in the branched headt (bht-A1) near-isogenic lines. Funct. Plant Biol. 46 (2019) 1023-1035. https://dx.doi.org/10.1071/Fp19041
Wolde G M, Trautewig C, Mascher M, Schnurbusch T:
Genetic insights into morphometric inflorescence traits of wheat. Theor. Appl. Genet. 132 (2019) 1661-1676. https://dx.doi.org/10.1007/s00122-019-03305-4
Alqudah A M, Youssef H M, Graner A, Schnurbusch T:
Natural variation and genetic make-up of leaf blade area in spring barley. Theor. Appl. Genet. 131 (2018) 873–886. https://dx.doi.org/10.1007/s00122-018-3053-2
Casas A M, Contreras-Moreira B, Cantalapiedra C P, Sakuma S, Gracia M P, Moralejo M, Molina-Cano J L, Komatsuda T, Igartua E:
Resequencing the Vrs1 gene in Spanish barley landraces revealed reversion of six-rowed to two-rowed spike. Mol. Breed. 38 (2018) 51. https://dx.doi.org/10.1007/s11032-018-0816-z
Guo Z, Chen D, Röder M S, Ganal M W, Schnurbusch T:
Genetic dissection of pre-anthesis sub-phase durations during the reproductive spike development of wheat. Plant J. 95 (2018) 909-918. https://dx.doi.org/10.1111/tpj.13998
Guo Z, Chen D, Schnurbusch T:
Plant and floret growth at distinct developmental stages during the stem elongation phase in wheat. Front. Plant Sci. 9 (2018) 330. https://dx.doi.org/10.3389/fpls.2018.00330
Guo Z, Liu G, Röder M S, Reif J C, Ganal M W, Schnurbusch T:
Genome-wide association analyses of plant growth traits during the stem elongation phase in wheat. Plant Biotechnol. J. 16 (2018) 2042-2052. https://dx.doi.org/10.1111/pbi.12937
Guo Z, Zhao Y, Röder M S, Reif J C, Ganal M W, Chen D, Schnurbusch T:
Manipulation and prediction of spike morphology traits for the improvement of grain yield in wheat. Sci. Rep. 8 (2018) 14435. https://dx.doi.org/10.1038/s41598-018-31977-3
McKim S M, Koppolu R, Schnurbusch T:
Barley inflorescence architecture. In: Stein N, Muehlbauer G J (Eds.): The Barley Genome, 1st ed. (Series: Kole, C (Ed.): Compendium of Plant Genomes) Cham: Springer (2018) ISBN 978-3-319-92528-8, 171-208. https://dx.doi.org/10.1007/978-3-319-92528-8_12
Pourkheirandish M, Kanamori H, Wu J, Sakuma S, Blattner F R, Komatsuda T:
Elucidation of the origin of “agriocrithon” based on domestication genes questions the hypothesis that Tibet is one of the centers of barley domestication. Plant J. 94 (2018) 525-534. https://dx.doi.org/10.1111/tpj.13876
Alqudah A M, Schnurbusch T:
Heading date is not flowering time in spring barley. Front. Plant Sci. 8 (2017) 896. https://dx.doi.org/10.3389/fpls.2017.00896
Guo Z:
Save Floret! Save yield! Save life! 18. Kurt von Rümker-Vorträge. Vortr. Pflanzenzücht. 86 (2017) 13-20.
Guo Z:
Physiological and genetic analyses for the determination of grain number in wheat. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Institut für Agrar- und Ernährungswissenschaften der Naturwissenschaftlichen Fakultät III (2017) 225 pp.
Guo Z, Chen D, Alqudah A M, Röder M S, Ganal M W, Schnurbusch T:
Genome-wide association analyses of 54 traits identified multiple loci for the determination of floret fertility in wheat. New Phytol. 214 (2017) 257-270. https://dx.doi.org/10.1111/nph.14342
Sakuma S, Lundqvist U, Kakei Y, Thirulogachandar V, Suzuki T, Hori K, Wu J, Tagiri A, Rutten T, Koppolu R, Shimada Y, Houston K, Thomas W T B, Waugh R, Schnurbusch T, Komatsuda T:
Extreme suppression of lateral floret development by a single amino acid change in the VRS1 transcription factor. Plant Physiol. 175 (2017) 1720-1731. https://dx.doi.org/10.1104/pp.17.01149
Thirulogachandar V, Alqudah A M, Koppolu R, Rutten T, Graner A, Hensel G, Kumlehn J, Bräutigam A, Sreenivasulu N, Schnurbusch T, Kuhlmann M:
Leaf primordium size specifies leaf width and vein number among row-type classes in barley. Plant J. 91 (2017) 601-612. https://dx.doi.org/10.1111/tpj.13590
Tikhenko N, Poursarebani N, Rutten T, Schnurbusch T, Börner A:
Embryo lethality in wheat-rye hybrids: dosage effect and deletion bin mapping of the responsible wheat locus. Biol. Plant. 61 (2017) 342-348. https://dx.doi.org/10.1007/s10535-016-0691-6
Venkatasubbu T:
Dosage of duplicated and antifunctionalized homeobox proteins influences leaf and spikelet development in barley (Hordeum vulgare L.). (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I - Biowissenschaften (2017) 165 pp.
Wolde G M:
Exploring modified durum wheat (Triticum durum Desf.) plant architecture. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät I - Biowissenschaften (2017) 189 pp.
Youssef H M:
Genotypic and phenotypic analysis of the SPIKE row-type in barley (Hordeum vulgare L.). 18. Kurt von Rümker-Vorträge. Vortr. Pflanzenzücht. 86 (2017) 67-74.
Youssef H M, Eggert K, Koppolu R, Alqudah A M, Poursarebani N, Fazeli A, Sakuma S, Tagiri A, Rutten T, Govind G, Lundqvist U, Graner A, Komatsuda T, Sreenivasulu N, Schnurbusch T:
VRS2 regulates hormone-mediated inflorescence patterning in barley. Nat. Genet. 49 (2017) 157-161. https://dx.doi.org/10.1038/ng.3717
Youssef H M, Mascher M, Ayoub M A, Stein N, Kilian B, Schnurbusch T:
Natural diversity of inflorescence architecture traces cryptic domestication genes in barley (Hordeum vulgare L.). Genet. Resour. Crop Evol. 64 (2017) 843-853. https://dx.doi.org/10.1007/s10722-017-0504-6
Alqudah A M, Koppolu R, Wolde G M, Graner A, Schnurbusch T:
The genetic architecture of barley plant stature. Front. Genet. 7 (2016) 117. https://dx.doi.org/10.3389/fgene.2016.00117
Guo Z, Schnurbusch T:
Costs and benefits of awns. J. Exp. Bot. 67 (2016) 2533-2535. https://dx.doi.org/10.1093/jxb/erw140
Guo Z, Slafer G A, Schnurbusch T:
Genotypic variation in spike fertility traits and ovary size as determinants of floret and grain survival rate in wheat. J. Exp. Bot. 67 (2016) 4221-4230. https://dx.doi.org/10.1093/jxb/erw200
Peukert M, Thiel J, Mock H-P, Marko D, Weschke W, Matros A:
Spatiotemporal dynamics of oligofructan metabolism and suggested functions in developing cereal grains. Front. Plant Sci. 6 (2016) 1245. https://dx.doi.org/10.3389/fpls.2015.01245
Youssef H M:
Genotypic and phenotypic analysis of the spike row-type in barley (Hordeum vulgare L.). (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Institut für Agrar- und Ernährungswissenschaften der Naturwissenschaftlichen Fakultät III (2016) 140 pp.
Alqudah A, Schnurbusch T:
Barley leaf area and leaf growth rates are maximized during the pre-anthesis phase. Agronomy 5 (2015) 107-129. https://dx.doi.org/10.3390/agronomy5020107
Alqudah A M:
Developmental and genetic analysis of pre-anthesis phases in barley (Hordeum vulgare L.). (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Institut für Agrar- und Ernährungswissenschaften der Naturwissenschaftlichen Fakultät III (2015) 169 pp.
Guo Z, Chen D, Schnurbusch T:
Variance components, heritability and correlation analysis of anther and ovary size during the floral development of bread wheat. J. Exp. Bot. 66 (2015) 3099-3111. https://dx.doi.org/10.1093/jxb/erv117
Guo Z, Schnurbusch T:
Variation of floret fertility in hexaploid wheat revealed by tiller removal. J. Exp. Bot. 66 (2015) 5945-5958. https://dx.doi.org/10.1093/jxb/erv303
Poursarebani N, Seidensticker T, Koppolu R, Trautewig C, Gawroński P, Bini F, Govind G, Rutten T, Sakuma S, Tagiri A, Wolde G M, Youssef H M, Battal A, Ciannamea S, Fusca T, Nussbaumer T, Pozzi C, Börner A, Lundqvist U, Komatsuda T, Salvi S, Tuberosa R, Uauy C, Sreenivasulu N, Rossini L, Schnurbusch T:
The genetic basis of composite spike form in barley and Miracle-Wheat"." Genetics 201 (2015) 155-165. https://dx.doi.org/10.1534/genetics.115.176628
Alqudah A M, Schnurbusch T:
Awn primordium to tipping is the most decisive developmental phase for spikelet survival in barley. Funct. Plant Biol. 41 (2014) 424-436. https://dx.doi.org/10.1071/FP13248
Alqudah A M, Sharma R, Pasam R K, Graner A, Kilian B, Schnurbusch T:
Genetic dissection of photoperiod response based on GWAS of pre-anthesis phase duration in spring barley. PLoS One 9 (2014) e113120. https://dx.doi.org/10.1371/journal.pone.0113120
Gardiner L J, Gawronski P, Olohan L, Schnurbusch T, Hall N, Hall A:
Using genic sequence capture in combination with a syntenic pseudo genome to map a deletion mutant in a wheat species. Plant J. 80 (2014) 895-904. https://dx.doi.org/10.1111/tpj.12660
Gawroński P, Ariyadasa R, Himmelbach A, Poursarebani N, Kilian B, Stein N, Steuernagel B, Hensel G, Kumlehn J, Sehgal S K, Gill B S, Gould P, Hall A, Schnurbusch T:
A distorted circadian clock causes early flowering and temperature-dependent variation in spike development in the Eps-3Am mutant of einkorn wheat. Genetics 196 (2014) 1253-1261. https://dx.doi.org/10.1534/genetics.113.158444
Koppolu R:
Six-rowed spike 4 (Vrs4) regulates spike architecture and lateral spikelet fertility in barley (Hordeum vulgare L.). (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Institut für Agrar- und Ernährungswissenschaften der Naturwissenschaftlichen Fakultät III (2014) 150 pp.
Pallotta M, Schnurbusch T, Hayes J, Hay A, Baumann U, Paull J, Langridge P, Sutton T:
Molecular basis of adaptation to high soil boron in wheat landraces and elite cultivars. Nature 514 (2014) 88-91. https://dx.doi.org/10.1038/nature13538
Peukert M, Thiel J, Peshev D, Weschke W, Van den Ende W, Mock H-P, Matros A:
Spatio-temporal dynamics of fructan metabolism in developing barley grains. Plant Cell 26 (2014) 3728-3744. https://dx.doi.org/10.1105/tpc.114.130211
Poursarebani N, Nussbaumer T, Šimková H, Šafář J, Witsenboer H, van Oeveren J, International Wheat Genome Sequencing C, Doležel J, Mayer K F X, Stein N, Schnurbusch T:
Whole-genome profiling and shotgun sequencing delivers an anchored, gene-decorated, physical map assembly of bread wheat chromosome 6A. Plant J. 79 (2014) 334-347. https://dx.doi.org/10.1111/tpj.12550
Tran V, Weier D, Radchuk R, Thiel J, Radchuk V:
Caspase-like activities accompany programmed cell death events in developing barley grains. PLoS One 9 (2014) e109426. https://dx.doi.org/10.1371/journal.pone.0109426
Youssef H M, Koppolu R, Rutten T, Korzun V, Schweizer P, Schnurbusch T:
Genetic mapping of the labile (lab) gene: a recessive locus causing irregular spikelet fertility in labile-barley (Hordeum vulgare convar. labile). Theor. Appl. Genet. 127 (2014) 1123-1131. https://dx.doi.org/10.1007/s00122-014-2284-0
Gawroński P:
Earliness per se 3 locus from wheat (Triticum sp. L) and barley (Hordeum vulgare L.) disrupts circadian clock function. (PhD Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III (2013) 136 pp.
Koppolu R, Anwar N, Sakuma S, Tagiri A, Lundqvist U, Pourkheirandish M, Rutten T, Seiler C, Himmelbach A, Ariyadasa R, Youssef H M, Stein N, Sreenivasulu N, Komatsuda T, Schnurbusch T:
Six-rowed spike4 (Vrs4) controls spikelet determinacy and row-type in barley. Proc. Natl. Acad. Sci. U. S. A. 110 (2013) 13198-13203. https://dx.doi.org/10.1073/pnas.1221950110
Schnurbusch T:
Molecular genetics of tolerance to high soil boron and drought in Australian wheat and barley germplasm. (Habilitation Thesis) Halle/S., Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät III (2013) 201 pp.
Bennett D:
A genetic dissection of drought and heat tolerance related traits in bread wheat (Triticum aestivum L.). (PhD Thesis) Adelaide, Australia, The University of Adelaide (2012) 140 pp.
Bennett D, Izanloo A, Edwards J, Kuchel H, Chalmers K, Tester M, Reynolds M, Schnurbusch T, Langridge P:
Identification of novel quantitative trait loci for days to ear emergence and flag leaf glaucousness in a bread wheat (Triticum aestivum L.) population adapted to southern Australian conditions. Theor. Appl. Genet. 124 (2012) 697-711. https://dx.doi.org/10.1007/s00122-011-1740-3
Bennett D, Izanloo A, Reynolds M, Kuchel H, Langridge P, Schnurbusch T:
Genetic dissection of grain yield and physical grain quality in bread wheat (Triticum aestivum L.) under water-limited environments. Theor. Appl. Genet. 125 (2012) 255-271. https://dx.doi.org/10.1007/s00122-012-1831-9
Bennett D, Reynolds M, Mullan D, Izanloo A, Kuchel H, Langridge P, Schnurbusch T:
Detection of two major grain yield QTL in bread wheat (Triticum aestivum L.) under heat, drought and high yield potential environments. Theor. Appl. Genet. 125 (2012) 1473-1485. https://dx.doi.org/10.1007/s00122-012-1927-2
Bowne J B, Erwin T A, Juttner J, Schnurbusch T, Langridge P, Bacic A, Roessner U:
Drought responses of leaf tissues from wheat cultivars of differing drought tolerance at the metabolite level. Mol. Plant 5 (2012) 418-429. https://dx.doi.org/10.1093/mp/ssr114
Gawroński P, Schnurbusch T:
High density-mapping of the earliness per se-3Am (Eps-3Am) locus in diploid einkorn wheat and its relation to the syntenic regions in rice and Brachypodium distachyon L. Mol. Breed. 30 (2012) 1097-1108. https://dx.doi.org/10.1007/s11032-011-9697-0
Miedaner T, Risser P, Paillard S, Schnurbusch T, Keller B, Hartl L, Holzapfel J, Korzun V, Ebmeyer E, Utz H F:
Broad-spectrum resistance loci for three quantitatively inherited diseases in two winter wheat populations. Mol. Breed. 29 (2012) 731-742. https://dx.doi.org/10.1007/s11032-011-9586-6
Sreenivasulu N, Schnurbusch T:
A genetic playground for enhancing grain number in cereals. Trends Plant Sci. 17 (2012) 91-101. https://dx.doi.org/10.1016/j.tplants.2011.11.003
Youssef H M, Koppolu R, Schnurbusch T:
Re-sequencing of vrs1 and int-c loci shows that labile barleys (Hordeum vulgare convar. labile) have a six-rowed genetic background. Genet. Resour. Crop Evol. 59 (2012) 1319-1328. https://dx.doi.org/10.1007/s10722-011-9759-5
Edwards J:
A genetic analysis of drought related traits in hexaploid wheat. (PhD Thesis) Adelaide/Australia, School of Agriculture, Food and Wine, Discipline of Plant Breeding and Genetics Australian Centre for Plant Functional Genomics, The University of Adelaide, Australia (2011) 233 pp.
Schnurbusch T, Hayes J, Hrmova M, Baumann U, Ramesh S A, Tyerman S D, Langridge P, Sutton T:
Boron toxicity tolerance in barley through reduced expression of the multifunctional aquaporin HvNIP2;1. Plant Physiol. 153 (2010) 1706-1715. https://dx.doi.org/10.1104/pp.110.158832
Schnurbusch T, Hayes J, Sutton T:
Boron toxicity tolerance in wheat and barley: Australian perspectives. Breed. Sci. 60 (2010) 297-304. https://dx.doi.org/10.1270/jsbbs.60.297
Izanloo A, Condon A G, Langridge P, Tester M, Schnurbusch T:
Different mechanisms of adaptation to cyclic water stress in two South Australian bread wheat cultivars. J. Exp. Bot. 59 (2008) 3327-3346. https://dx.doi.org/10.1093/jxb/ern199
Schnurbusch T, Langridge P, Sutton T:
The Bo1-specific PCR marker AWW5L7 is predictive of boron tolerance status in a range of exotic durum and bread wheats. Genome 51 (2008) 963-971. https://dx.doi.org/10.1139/G08-084
Schnurbusch T, Collins N C, Eastwood R F, Sutton T, Jefferies S P, Langridge P:
Fine mapping and targeted SNP survey using rice-wheat gene colinearity in the region of the Bo1 boron toxicity tolerance locus of bread wheat. Theor. Appl. Genet. 115 (2007) 451-461. https://dx.doi.org/10.1007/s00122-007-0579-0
Singh K, Ghai M, Garg M, Chhuneja P, Kaur P, Schnurbusch T, Keller B, Dhaliwal H S:
An integrated molecular linkage map of diploid wheat based on a Triticum boeoticum x T. monococcum RIL population. Theor. Appl. Genet. 115 (2007) 301-312. https://dx.doi.org/10.1007/s00122-007-0543-z
Sutton T, Baumann U, Hayes J, Collins N C, Shi B J, Schnurbusch T, Hay A, Mayo G, Pallotta M, Tester M, Langridge P:
Boron-toxicity tolerance in barley arising from efflux transporter amplification. Science 318 (2007) 1446-1449. https://dx.doi.org/10.1126/science.1146853
Tommasini L, Schnurbusch T, Fossati D, Mascher F, Keller B:
Association mapping of Stagonospora nodorum blotch resistance in modern European winter wheat varieties. Theor. Appl. Genet. 115 (2007) 697-708. https://dx.doi.org/10.1007/s00122-007-0601-6
scroll top