© Leibniz-Institut (IPK)


The mission of the research group Metabolic Systems Interactions is to gain a better understanding of the capacities and constraints that shape the behavior of the plant’s metabolic systems and their interactions. The group uses computational approaches that are centred around the analysis of large-scale metabolic networks and works closely with experimental labs at the IPK and other research institutes in Germany and abroad.

Key topics are the development of constraint-based methods to study tissue- and organ interactions, the curation and computational integration of specialized metabolism and the study of plant-environment interactions. The gained knowledge will guide metabolic engineering strategies for improved crop plant productivity and quality. 

scroll top


We are currently working on the following topics and we are continously looking for students on all levels and PostDocs to join our team:

  • Development and application of multi-organ up to whole-plant metabolic models
  • Modelling and analysis of CAM and C4 photosynthesis
  • Software development for metabolic network reconstruction and curation
  • Computational modelling of the energetics of guard cell metabolism

scroll top


Cruz Stefano Andre cruz@ipk-gatersleben.de+49 39482 5-849
Gaikwad Mithil Ratnakar gaikwad@ipk-gatersleben.de+49 39482 5-143
Sahu Ankur sahu@ipk-gatersleben.de+49 39482 5-849
ToepferDr. Nadine toepfer@ipk-gatersleben.de+49 39482 5-866
Weder Jan-Niklas weder@ipk-gatersleben.de
Scientific guests / Fellowship
Branco VieiraDr. Monique branco@ipk-gatersleben.de
Soltani Fatemeh soltani@ipk-gatersleben.de+49 39482 5-849

scroll top



Sahu A, Blätke M-A, Szymański J J, Töpfer N:

Advances in flux balance analysis by integrating machine learning and mechanism-based models. Comput. Struct. Biotechnol. J. 19 (2021) 4626-4640. https://doi.org/10.1016/j.csbj.2021.08.004

Töpfer N:

Environment-coupled models of leaf metabolism. Biochem. Soc. Trans. 49 (2021) 119–129. https://dx.doi.org/10.1042/BST20200059


Seidel J:

Implementation and application of computational approaches to integrate generegulatory and metabolic networks. (Bachelor Thesis) Mittweida, Hochschule Mittweida, Fakultät Angewandte Computer- und Biowissenschaften (2020)

Töpfer N, Braam T, Shameer S, Ratcliffe R G, Sweetlove L J:

Alternative Crassulacean acid metabolism modes provide environment-specific water-saving benefits in a leaf metabolic model. Plant Cell 32 (2020) 3689-3705. https://dx.doi.org/10.1105/tpc.20.00132

scroll top